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In scientific fields such as systems biology, evaluation of the relationship between network members 
(vertices) is approached using a network structure. In a co-expression network, comprising genes 
(vertices) and gene-to-gene links (edges) representing co-expression relationships, local modular 
structures with tight intra-modular connections include genes that are co-expressed with each other. 
For detecting such modules from among the whole network, an approach to evaluate network 
topology between modules as well as intra-modular network topology is useful. To detect such 
modules, we combined a novel inter-modular index with network density, the representative intra-
modular index, instead of a single use of network density. We designed an algorithm to optimize the 
combinatory index for a module and applied it to Arabidopsis co-expression analysis. To verify the 
relation between modules obtained using our algorithm and biological knowledge, we compared it to 
the other tools for co-expression network analyses using the KEGG pathways, indicating that our 
algorithm detected network modules representing better associations with the pathways. It is also 
applicable to a large dataset of gene expression profiles, which is difficult to calculate in a mass. 

       Keywords: network topology, local modular structure, network density, co-expression analysis 

1. Introduction 

Complex systems are the focus of many studies in various fields, such as systems biology. 
To visualize and analyze such complex systems, network analysis is considered to be a 
powerful approach [1]. A network structure is composed of vertices that are linkable to 
multiple other vertices on the basis of a threshold for vertex-to-vertex connections; e.g., 
protein-to-protein in a protein interaction network [2-4], and gene-to-gene in a gene co-
expression network [5-11], reviewed in [12-14]. Such a network includes ‘network 
modules’, in which the vertices are tightly interconnected [15,16]. The detection of 
network modules leads to the elucidation of novel vertex-to-vertex associations in 
various fields of networks. 

In a co-expression network, pairs of genes are connected on the basis of similarity in 
their expression profiles, which are obtained from DNA microarray datasets, and are 
used for prediction their functional relatedness, such as the relationship of transcriptional 
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regulation [6], close relationships in a metabolic pathway [10,17] and subunits of a 
common protein complex [18]. To detect local network modules from among a co-
expression network based on gene expression profiles, recent co-expression network 
approaches have optimized a cutoff value for gene-to-gene links in the network. Gupta et 
al. [19] proposed that the ‘average clustering coefficient’ index can be used to optimize a 
single cutoff value for their gene-to-gene correlation network. Margolin et al. [20] 
developed the ARACNE tool for detecting co-expressed genes, which exploits the ‘joint 
probability distribution’ index for evaluating gene-to-gene correlations on the basis of 
statistical physics and information theory for reducing the number of false-positive co-
expression links. The DP-Clus tool uses the ‘cluster property’ index, which is calculated 
on the basis of network topology to improve the inference of protein-to-protein 
interactions by removing false-positive interactions [21]. To detect communities in a 
social network, in which a vertex represents a person and a pair of persons are connected 
on the basis of human relationship, Bagrow and Bollt [22] proposed the ‘l-shell’ 
algorithm, which can be executed without knowledge of the entire network. To use these 
algorithms, a cutoff value for the vertex-to-vertex association index must be selected. 

To separate a local network module using an appropriate cutoff value, a combined 
evaluation of intra-modular and inter-modular connections is useful. A high cutoff value 
through the entire network may contribute to separating local network modules from 
each other and, conversely, may lose intra-modular connections. Although a low cutoff 
value may contribute to intra-modular connections, it may prevent the separation of local 
network modules. Network density is a representative index for intra-modular 
connections. As indices for inter-modular connections, the betweenness [23] and 
cohesiveness [24] indices are used. It is, however, difficult to combine these indices with 
network density due to the difference in object connections between them. 

We devised a novel index for evaluating inter-modular connections and combining 
with network density and developed an algorithm for detecting network modules using 
the combination. For combining these indices, we calculated their harmonic mean. To 
verify whether co-expression modules obtained from our algorithm are associated with 
biological knowledge, we applied it to Arabidopsis co-expression analysis and compared 
it to the publicly available algorithms ARACNE and DP-Clus for the similar purpose 
using the KEGG pathways. Through comparative analysis, we demonstrate that our 
algorithm detected co-expression modules with higher network indices and better 
assignment to the pathways than those obtained using the other tools. 

2. Method and Results 

2.1. Definitions 

We define an index (NB) for evaluating connections between network modules and 
combining with network density (ND) as follows.  
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In Eq. (1), n represents the number of vertices included in the module, i ranges according 
to ni 1 , e(i) represents the number of vertex-to-vertex links (edges) between the ith 
vertex in the module and the other module members over a threshold cutoff value for 
vertex-to-vertex association (TC; e.g. the Pearson correlation coefficient in the 
application to Arabidopsis genes in the present research), and d(i) represents the total 
number of vertex-to-vertex links between the ith vertex and the all possible vertices 
included in the whole network over a TC, irrespective of membership in the module 
(degree). Using these equations, the combined index (NC), the harmonic mean of ND and 
NB can be calculated in the following equation. 
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When NC of a network module is the maximal value of 1, the module is depicted as a 
complete graph with no vertex-to-vertex link to vertices outside of the module. In the 
present paper, we hypothesize that vertices in a network module with a higher NC value 
are more closely associated with each other. 

We also define the combined index of a single vertex to a network module (VC) as 
follows. 
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In Eq. (4), e(i), d(i), and n are similar to those in Eq. (3). 

2.2. Microarray datasets 

For a comparative analysis between our algorithm, ARACNE [20], and DP-Clus [21] 
using the KEGG PATHWAY dataset, including not only metabolic pathways, but protein 
complexes, we selected the AtGenExpress developmental dataset, composed of 237 
DNA microarray data in various developmental stages [25], and 1752 Arabidopsis genes 
included in the 136 metabolic pathways and protein complexes for Arabidopsis [26]. 
Using the dataset, Pearson correlation coefficients for all pairs of the genes were 
calculated on the basis of similarity in their expression profiles. The size of this dataset 
does not exceed the limitation in ARACNE and DP-Clus implementation. 

For a comprehensive co-expression analysis in Arabidopsis genes, we obtained the 
gene-to-gene correlation dataset from the ATTED-II database [27], comprising 22 263 
genes and 1388 DNA microarray data, which are available at [28]. 
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2.3. An algorithm to extract co-expression modules 

Our algorithm starts with a single vertex, referred to as the seed vertex (SV), and then 
detects a network module including the SV in the following steps (Fig. 1). 
 

 
Figure 1: Schematic images of our algorithm. A hexagon and a circle represent a seed vertex (SV) and a vertex 
except for the SV. A vacant and a filled circle represent a vertex with a high and low VC value, respectively. A 
vertex-to-vertex link is depicted when a correlation coefficient for the relationship of the vertex pair are equal to 
or higher than a threshold cutoff value of the coefficient (TC). A link connected to a single vertex represents a 
connection between a group member and a non-member. The detailed description of this scheme is in the An 
algorithm to extract co-expression modules section. 

 
Step 1. SV selection.  An SV can be arbitrarily selected at the initiation of the algorithm. 
We selected all individual genes as SVs. 
 
Step 2. Highly correlated vertex (HV) selection. For the SV, we set a series of vertex 
groups (HVs) composed of the SV (a hexagon in Fig. 1) and vertices (circles) with the 
highest correlation coefficients to the SV. For example, the HV(i) group has i + 1 vertices 
including the SV and the vertices that show the first to ith highest correlation coefficients 
to the SV. The HV(i) group members are interconnected on the basis of the cutoff value 
of TC(i), which is the ith highest (i.e. the lowest within this group) correlation coefficient 
to the SV. In this step, namely, the SV is connected to all vertices. 
 
Step 3. False-positive vertex exclusion and NC calculation. Fisrt, the NC value of each 
HV group is calculated. Next, the VC values of members of the group are calculated. 
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Then, the vertex with the lowest VC value (one of filled circles in Fig. 1) is excluded as a 
false-positive vertex from the group to create the new group. The NC calculation and the 
one-by-one exclusion are repeated until the group comprises three vertices. This step is 
performed for all HV groups selected in Step 2. 
 
Step 4. Kernel vertex (KV) selection. Of all temporal groups during Step 3 for each HV 
group, the group with the highest NC value is selected as the KV group. 
 
Step 5. The best KV selection. From among the KV groups, the group with the highest 
NC value is selected as the best KV group. When KV(i) group, originating from the HV(i) 
group, is selected as the best KV group, TC(i) is used as the cutoff value of vertex-to-
vertex correlation coefficient for the group. 
 
Step 6. False-negative vertex detection. For the best KV group, vertices with high VC 
values to the group but non-members of the group (i.e. false-negative vertices for the 
group) are extracted from outside of the group. The VC value of each non-member is 
calculated at various TC (ranging from 0 to 1). If the highest value of a vertex is user-
selected cutoff value (e.g. 0.5) or higher, the vertex is incorporated into the group. 
Finally, the group composed of the best KV group and the vertices extracted in this step 
are selected as members of a ‘network module’ originating from the SV. 

2.4. Testing 

To verify the applicability of our algorithm to associating a network module detected 
from our algorithm with a biological network, we performed a comparative analysis 
using Arabidopsis genes to the ARACNE tool [20] and the DP-Clus tool [21], which can 
be used to detect co-expression modules from gene expression datasets and are 
appropriate for a fair comparison to our algorithm, although they are designed for other 
purposes. In the analysis, the indices in their network topology and in their associations 
to 136 pathways and protein complexes in the KEGG PATHWAY dataset were 
compared. As a gene expression dataset for this comparative analysis, we selected the 
AtGenExpress developmental dataset (see Microarray datasets), because ARACNE and 
DP-Clus can accept the sizes of the dataset, while our algorithm is feasible, irrespective 
of data size. The ARACNE and DP-Clus tools require setting threshold cutoff values for 
the gene-to-gene association index. For fair comparison between our algorithm, 
ARACNE, and DP-Clus in extracting co-expression modules, we used several cutoff 
values for their execution; i.e. e-20, e-30, e-40, e-50 for ARACNE and a range of gene-
to-gene correlation coefficient of 0.45 to 0.90 at intervals of 0.05 for DP-Clus. To 
perform the comparative analysis, we selected their adequate cutoff values with which 
the average size of the co-expression modules from each approach is similar to that of the 
KEGG PATHWAY dataset, resulting in values of e-40 for ARACNE and 0.75 for DP-
Clus. For the co-expression modules obtained from the three network approaches, we 
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calculated the precision values of the modules to individual pathways in the following 
equation and compared those between approaches. 

 (precision) = (module members assigned to a pathway) / (all of the module 
members) (5) 

The average precision values in a total of 1752 modules are 0.31 for our algorithm, 0.19 
for ARACNE, and 0.18 for DP-Clus. Figure 2 shows the relationship of the precision 
values to the ratio of genes included in co-expression modules with the precision value or 
higher to 1752 genes. In Fig. 2, the ratios in any precision values are highest in using our 
algorithm, especially the number of genes in co-expression modules with 0.9 or higher 
precision values (228 genes) are five-fold (45 genes) and ten-fold (22 genes) as much as 
ARACNE and DP-Clus. 

 
Figure 2: The number of genes included in co-expression modules well-assigned to the KEGG pathways. The 
precision value represents the ratio of genes included in a specific KEGG pathway among genes included in a 
co-expression module. For the precision value of 0.9, our algorithm detects 228 genes; five-fold and ten-fold as 
much as those in ARACNE (45 genes) and DP-Clus (22 genes), respectively. 

 
We performed comparative ROC curve analysis, a representative approach to evaluate 
the ability to detect, in the assignment of co-expression modules detected by our 
algorithm and the other tools to a specific KEGG pathway. We selected the largest 
‘Ribosome’ pathway, to which 190 genes are assigned, for the analysis. The precision 
values of all co-expression modules in the three approaches to the pathway were 
calculated. On the basis of the assignment of SVs included in the modules to the pathway, 
the false positive rates (FPRs) and the true positive rates (TPRs) were calculated to depict 
ROC curves of the approaches (Fig. 3). In the ROC curves, our algorithm shows the 
better result than those of ARACNE and DP-Clus, especially in the region of low FPR. 
These findings indicate that co-expression modules obtained using our algorithm are 
assigned to the KEGG pathways better than the other tools. The information of co-
expression modules with high precision values (≥ 0.5) is listed in Table 1. 
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Figure 3: ROC curves of the three approaches in the assignment of co-expression modules to ‘ribosome’ 
pathway. The FPR and TPR indices represent false positive rate and true positive rate, respectively. The FPR 
index is calculated by the ratio of genes incorrectly assigned to the pathway by an approach among genes that 
are not included in the pathway. The TPR index is calculated by the ratio of genes correctly assigned to the 
pathway by an approach among genes included in the pathway. The ROC curve of our algorithm shows the 
better result than those of the other two algorithms. 

2.5. Implementation 

To verify the applicability of our algorithm to a large dataset, we applied it to a large 
expression dataset of Arabidopsis genes (see Microarray datasets). In this application, 
many co-expression modules with high NC values were detected. Of 22 263 genes, 8446 
genes (approximately 38 %) are included in co-expression modules with 0.5 or higher 
NC values. The TC values of co-expression modules, in which the NC values are 
optimized, vary in the both organisms as shown in Fig. 4; i.e. 0.59 ± 0.14 (mean ± 
standard deviation). It indicates that the TC values should be selected in individual co-
expression modules in terms of tight intra-modular connections. The TC peak in Fig. 4 
(i.e. 0.59) are similar to a single TC value in the network that was selected in previous 
reports. Saito et al. [13] used 0.6 as a single threshold cutoff for the coefficient. Aoki et 
al. [12] mentioned that, for TC ranging from 0.55 to 0.66, the density of the entire 
network displays a minimal value, i.e. that the number of false-positive gene-to-gene 
links is minimized within the range. To minimize such false-positive links, Gupta et al. 
[19] optimized the average clustering coefficient value in a well-controlled dataset and 
determined a single TC value of 0.9 (the square of Pearson correlation coefficient). The 
broadened distribution of TC values in optimized co-expression modules (Fig. 4) 
suggests that TC values should be selected for each module when using the vast number 
of microarray datasets, including various experimental designs. 
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Table 1: Co-expression modules with high precision values to the KEGG pathways. 

Genes in a 
co-

expression 
module (A) 

Genes in a 
specific 
KEGG 

pathway 
(B) 

Precision 
(B / A) 

KEGG pathway name Pathway ID One of SVs 

115 112 0.97 Ribosome ath03010 At2g17360 
22 21 0.95 Proteasome ath03050 At3g22630 
25 19 0.76 Oxdative phosphorylation ath00190 At1g01050 
16 11 0.69 DNA replication ath03030 At4g02060 

15 8 0.53 
Phenylpropanoid 

biosynthesis 
ath00940 At5g42590 

10 7 0.70 Fatty acid biosynthesis ath00061 At1g62640 
10 7 0.70 Photosynthesis ath00195 At4g12800 

5 4 0.80 
Alpha-linolenic acid 

metabolism 
ath00592 At1g17420 

7 4 0.57 
Starch and sucrose 

metabolism 
ath00500 At2g36390 

3 3 1.00 
Valine, leucine and 

isoleucine biosynthesis 
ath00290 At1g31180 

3 3 1.00 Flavonoid biosynthesis ath00941 At3g51240 

3 3 1.00 
Phosphatidylinositol 

signalling system 
ath04070 At2g41210 

3 3 1.00 
SNARE interactions in 

vesicular transport 
ath04130 At5g58060 

4 3 0.75 
Valine, leucine and 

isoleucine degradation 
ath00280 At1g50110 

4 3 0.75 
Phenylalanine, tyrosine and 

tryptophan biosynthesis 
ath00400 At1g48860 

4 3 0.75 Methane metabolism ath00680 At1g22440 
4 3 0.75 Mismatch repair ath03430 At4g02460 
5 3 0.60 Glycolysis / Gluconeogenesis ath00010 At3g52930 

5 3 0.60 
Carbon fixation in 

photosynthetic organisms 
ath00710 At1g63290 

Co-expression modules that show precision values of 0.5 or higher and comprise 3 or more genes are listed. 

3. Discussion 

Our algorithm assembled network modules that are well-assigned to biological 
knowledge such as metabolic pathways. Especially, co-expression modules involved in 
‘ribosome’, ‘oxidative phosphorylation’, ‘proteasome’, and ‘phenylpropanoid 
biosynthesis’ showed high (> 0.9) precision values of the module members to the 
pathways or complexes (Table 1), suggesting that such pathways and functional groups 
are well co-expressed. Li [17] and Wei et al. [10] reported associations between 
metabolic pathways and co-expression. However, many co-expression modules show 
low precision values to the pathways because of the following possible causations. First, 
all of metabolic pathways are not necessarily co-expressed, possibly due to regulatory 
mechanisms other than transcriptional regulation such as post-transcriptional regulation, 
as mentioned by Saito et al. [13]. Second, the paucity of information on the assignment 
of enzyme genes to metabolic pathways may cause a low rate of assignment of enzyme 
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genes included in co-expression modules. Third, co-expression relationships are not 
necessarily equivalent to direct regulatory relationships. Co-expression network analysis 
is just pre-screening for reconstructing regulatory networks. Furthermore information on 
the assignment to biological pathways may lead to a reduction of co-expression modules 
with low assignment to the pathways. 

Co-expression modules with optimized NC values show broadened distribution of 
TC values throughout all modules. Such distribution may arise from biases included in 
combined datasets, e.g. a dataset including microarray data of different experimental 
designs for different purposes. In the analyzed expression dataset of Arabidopsis genes, 
which is composed of 1388 microarray data, includes 275 assay data (approximately 
20 %) from leaves and 9 assay data (< 1 %) from pollen, indicating that expression 
similarity in leaves between genes may have a strong influence on their gene-to-gene 
correlation coefficients and vice versa in pollen. Under such influence, a single threshold 
cutoff of the coefficient may by adequate for limited co-expression modules. Despite of 
the heterogeneity of a gene expression dataset, Obayashi et al. [27] reported that the 
applicability of such dataset in co-expression analysis. 

Our algorithm can be applied to any sizes of datasets comprising vertex-to-vertex 
correlation data. The algorithm starts with the association of a single vertex, such as 
hierarchical clustering, and shows constant and processible computational loads through 
the implementation. In contrast, many publicly available tools for clustering approach 
such as ARACNE [20] and DP-Clus [21] start with the matrix operation of the whole 
dataset and thus depend upon the size of a dataset for their steady implementation. 

Our algorithm is an approximate approach for optimizing an NC value for a network 
module. In its application to Arabidopsis gene expression datasets, it occasionally causes 
different memberships in co-expression modules involved in the common biological 
event, indicating the insufficient maximization of NC values. The real maximization for a 
gene cluster including an SV, from among 22 263 genes, requires verification of all 
possible combinations of genes including the SV. The number of such combination, 
however, reaches astronomical levels in the following equation. 
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In Eq. (6), N represents the number of genome-wide genes. Using our algorithm, the 
number of such combinations is reduced into N2-order as follows. 
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Although our algorithm may provide some modules with insufficient maximization of 
NC, it provided the NC values (0.76 on average) better than those in ARACNE (0.33) 
and DP-Clus (0.48). 
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Additionally, a gene may be included in multiple co-expression modules through our 
algorithm, indicating the possibility that a gene is associated with multiple biological 
processes. 

4. Conclusions 

Our algorithm can be applied to vertex-to-vertex correlation datasets, based on which a 
network including modular structure is constructed, such as gene expression datasets, 
irrespective the size of the dataset. 
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